
Towards Unified Invenio
Configuration Database

Manager

Author: Jiří Kunčar
jiri.kuncar@gmail.com

CERN Openlab

26/08/2011

mailto:jiri.kuncar@gmail.com

Contents

1 Introduction 2

1.1 Problem definition . 3

1.2 Outline . 4

2 Design and Implementation 5

2.1 SQLAlchemy Models . 6

2.2 Queries Definition . 7

2.3 Schema Manipulation - create, drop, truncate 9

2.3.1 MySQL Specific Problem (error #1170) 9

2.4 Schema Visualization - schema . 10

2.5 Data Export - dump . 10

2.5.1 Column Data Transformation 12

2.6 Data Import - import . 12

3 Conclusion 13

A Modules 16

B Schemas 23

2

Abstract

Managing of configuration and data of large projects requires handy configuration
tool for deployment and backups. The runtime configuration and data mostly live
in databases, hence the configuration tool should kind of enrich basic SQL dumper and
loader functionality. However, the structure of stored data can be very complex and
have complicated relationships and recursive associations. This particular project has
the objective of defining database independent model for replacing hand-written SQL
schema and create universal dumper and loader for all modules of Invenio software suite
enabling to run a digital library or document repository on the web.

Chapter 1

Introduction

Managing of configuration and data of large projects requires dependable tool for de-
ployment and backups. The runtime configuration and data mostly live in databases,
hence the configuration tool should kind of enrich basic SQL dumper and loader func-
tionality. However, the structure of stored data can be very complex and have compli-
cated relationships and recursive associations.

This technical report attempts to provide description of the database management tool
developed primarily for the Invenio project, however the core of tool should be universal
for any project. The Invenio software suite provides the technology that cover all
aspects of digital library management from document ingestion through classification,
indexing, and curation to dissemination. Invenio has been originally developed at CERN
to run the CERN document server, managing over 1,000,000 bibliographic records in
high-energy physics since 2002, covering articles, books, journals, photos, videos, and
more [1]. Currently it is being used by about thirty1 scientific institutions worldwide.

The developed software is usually deployed to several machines in order to do proper
testing. Afterwards, it can distributed to many institutions, thus it is necessary to
transfer the database schema and fill it with initial data. The main challenge is to
integrate universal database models for manipulating and providing data represented
in human-friendly format, so that the intermediate files can be easily editable before
being loaded to the database.

1in July 2011

2

CHAPTER 1. INTRODUCTION

PROD databaseDEV database

dump load

edit

Backup

Figure 1.1: Work-flow

The tool will be used by administrators of Invenio for transferring of data between
development and production servers or between different instances of the same software
(see Figure 1.1). The reasons that let to development of this program, are described in
following section.

1.1 Problem definition

The inveniocfg2 has been developed to ease the installation process, demo site set-up,
configuration files editing, and database tables update. Most of the database actions is
defined as SQL queries and run from Makefiles. This approach has several disadvan-
tages:

• hard to define selective data dump with all related rows;

• difficult to maintain create/alter tables; and

• only MySQL database management system (DBMS) is supported.
2Invenio configuration and administration CLI tool.

3

CHAPTER 1. INTRODUCTION

A basic command line tool for dumping and loading data has been already developed
using specific syntax for defining model relationships and queries. The goal of this
project was to create unified database models and define human friendly queries in
standard configuration (ini) file.

This is the first step to database independence and time for review of database schema,
because most of missing relationships between tables will be captured in the created
model. On top of that the tool will also facilitate database schema creation with newly
added constraints for multiple database management systems using Object Relation
Mapper (ORM).

In addition, it is going to simplify database configuration tool, which should also support
selective data export and import based on defined queries. The selected classes with
all related objects will be serialized into human-readable text file, that should be easily
editable. It can be eventually backed up and transferred to other servers.

1.2 Outline

The remaining part of this report comprises these chapters: Chapter 2 presents design
and implementation and gives an overview of the technologies used when developing
software for the database dumper/loader as well as the design and structure of the tool.
Chapter 3 concludes the report and brings new ideas for possible future improvements.

4

Chapter 2

Design and Implementation

Data management tasks and database schema operation in object-oriented program-
ming are typically implemented by manipulating objects corresponding to tables in
relational database. However, there is a dependency drawback between demanded
abstraction level and performance while using typical Object Relation Mapper (ORM)
hence it should give application developers the full power and flexibility of SQL queries.

One of the most famous Python SQL toolkit is SQLAlchemy with an optional ORM
component that provides the data mapper pattern, where classes can be mapped to
the databases in open ended, multiple ways — allowing the object model and database
schema to develop in a cleanly decoupled way from the beginning. SQLAlchemy allows
to express wide range of SQL statements; any of these units can be composed into a
larger structure.

In this section, we will describe features of the developed management tool. The im-
plementation takes advantages of SQLAlchemy models for easy iterations and manipu-
lations of database tables. The typical work–flow with developed tool is demonstrated
in Figure 1.1 and it corresponds to the initial project plan. The program uses standard
Python library ArgumentParser1 for parsing command line options and ConfigObj2

for simple reading and writing of configuration (ini) files.
1http://docs.python.org/library/argparse.html
2http://code.google.com/p/configobj/

5

http://docs.python.org/library/argparse.html
http://code.google.com/p/configobj/

CHAPTER 2. DESIGN AND IMPLEMENTATION

2.1 SQLAlchemy Models

The SQLAlchemy Object Relational Mapper presents variety of methods of associating
user-defined Python classes with database tables, and instances of those classes (objects)
with rows in their corresponding tables. The usual ORM configuration process starts
by describing the database tables, and then by defining classes which will be mapped to
those tables. The SQLAlchemy allows to perform these steps together, using a system
known as Declarative, which allows us to create classes that include directives to describe
the actual mapped database table [2].

The Listing 2.1 shows typical example of declarative model definition describing the
user table of Invenio with columns of various data types. The SQLAlchemy keeps
all columns transparently synchronized with changes that have been made on mapped
objects. It also allows to define and to handle relationships between models (including
self-referenced variant).

class User(Base):

__tablename__ = ’user’

id = Column(Integer , primary_key=True , autoincrement=

True)

email = Column(String (255), nullable=False)

password = Column(Binary , nullable=False)

note = Column(String (255) , nullable=True)

settings = Column(Binary , nullable=True)

nickname = Column(String (255), nullable=False)

last_login = Column(DateTime , nullable=False ,

server_default=’0000 -00 -00␣00:00:00 ’)

Listing 2.1: User Model

The following example 2.2 represents a One-to-Many relationship between Collections
and their names (Collectionnames). First we define foreign key (ForeignKey()) on
column id_collection referring to Collection.id. A second directive, known as
relationship(), tells the ORM that the Collectionname class itself should be linked
to the Collections class, using the attribute Collectionname.collection. A subdi-

6

CHAPTER 2. DESIGN AND IMPLEMENTATION

rective of relationship() called backref is placed inside of relationship(), provid-
ing details about the relationship as expressed in reverse, that of a set of Collectionname
objects on Collection referenced by Collection.names. The bidirectional rela-
tionship is a key feature of the SQLAlchemy and it can be used also for Many-to-Many
relations.

class Collection(Base):

__tablename__ = ’collection ’

id = Column(Integer (9), primary_key=True)

name = Column(String (255) , unique=True , index=True)

...

class Collectionname(Base):

__tablename__ = ’collectionname ’

id_collection = Column(Integer , ForeignKey(Collection.

id), primary_key=True)

ln = Column(String (5), primary_key=True)

type = Column(String (3), primary_key=True)

value = Column(String (255))

collection = relationship(Collection , backref=’names’)

Listing 2.2: One-to-Many Relation

The above Collectionname class contains details about the table collectionname with
multiple columns denoted as a primary (composite) keys. Note that ORM in order to
actually map to a particular table needs there to be at least one column denoted
as a primary key column.

2.2 Queries Definition

To retrieve desired data it is necessary to enter a query into the system. Queries are
formal statements identifying an object or a collection of relevant information in a
database. Queries should allow the user to describe desired data in easy way without

7

CHAPTER 2. DESIGN AND IMPLEMENTATION

the knowledge of their physical location. However, SQL3 — the most used database
language, requires certain knowledge of database structure and also database man-
agement system. Moreover the description of complex data with many relations may
lead to complicated expressions. Hence we introduce simplified query definition taking
advantage from SQLAlchemy models.

Our query definition relies on defined models and relations included in the class property
definition that we explained in previous section. Thus the entire query can be simplified
to the list of class names with information about blacklisted columns and requested
related objects. The comparison predicate (know from SQL as WHERE clause) is uncouple
and the query restriction is done in the tool.

Let us suppose that all table models have been already created. Now we describe a way
how to define queries in configuration file for a part of Invenio module call WebSearch
(see Figure B.7). The configuration file has to have a root section [Queries]. Then
each subsection is name of a query that should have defined import modules and parent
class.

[Queries]

[[websearch]]

import = WebSearch ,

class = Collection

Listing 2.3: Queries configuration

The following subsection [[[options]]] includes extended features for querying indi-
vidual classes. The default setting tells to print all class column properties. Some or
all of them can be blacklisted by adding prefix ‘-‘ to column name. If there are some
relationships defined that should be exported or imported, it is necessary to explicitly
append their names to configuration list. The default behaviour ensures only export of
primary keys of associated models. Relationship names prefixed with sign ‘+‘ enable to
recursively include associated classes.

[[[options]]]

Collection = -nbrecs , +names , +examples , +sons

Collectionname = ,

3Structured Query Language

8

CHAPTER 2. DESIGN AND IMPLEMENTATION

CollectionCollection = +son ,

CollectionExample = +example ,

Example = ,

Listing 2.4: Query options

We believe that the introduced query definition is more intuitive and offers users to
specify their needs much faster and without deep knowledge of SQL.

2.3 Schema Manipulation - create, drop, truncate

In order to replace old installation process we need a way to easily create database
tables. After the models have already been created, it is very convenient to use the
SQLAlchemy feature to automatically generate SQL create or drop statements for
database schema. However, in some cases it can be also useful to only create or drop
indexes. Therefore we added parameter -i to answer such a need. User can also print
only SQL queries that are going to be executed when he specifies the "dry run" option
-d. The last option truncate allows to delete all data from defined tables.

2.3.1 MySQL Specific Problem (error #1170)

While we were creating models definitions, we found a problem4 with creating indexes
with defined length on TEXT or BINARY columns in MySQL. The syntax helps database
management system to create better index with improved performance, but it is not
supported by SQLAlchemy query builder out of the box.

Fortunately, SQLAlchemy supports redefinition of dialect templates for creating in-
dexes (CreateIndex()) and primary key constrains (PrimaryKeyConstraint()) thus
we could create index length definition for indexed TEXT columns by redefining SQLAlchemy
these default MySQL dialect templates.

4http://dev.mysql.com/doc/refman/5.0/en/error-messages-server.html#error_er_blob_
key_without_length

9

http://dev.mysql.com/doc/refman/5.0/en/error-messages-server.html#error_er_blob_key_without_length
http://dev.mysql.com/doc/refman/5.0/en/error-messages-server.html#error_er_blob_key_without_length

CHAPTER 2. DESIGN AND IMPLEMENTATION

2.4 Schema Visualization - schema

Visualization of created classes can be very beneficial for future authors of queries for
modules so they can be familiar with the database structure much faster. The tool
is based on SchemaDisplay5 extension that loads the model classes and analyses its
properties and relationships (model associations like one/many-to-many, etc.). Schema
visualization uses a wrapper for pydot along with graphviz for generating png class
diagrams from all loaded tables in selected module. There is also option (-t) to display
only tables defined in options section in configuration file for the used module query.

2.5 Data Export - dump

After having defined models and queries the tables content can be easily exported to
an intermediate text file that can be transferred from development to production server
later.

The export starts with filtering data according primary key value(s) in table mapped
to parent class. Then each object in found tuple is serialized according to query options
(described in Section 2.2) and stored in dictionary. The associated objects are automat-
ically loaded by SQLAlchemy and the export function is recursively called. The filled
dictionary object is transformed by ConfigObj parser to intermediate file with config-
uration syntax and printed to file defined in argument -f or to the standard output.
The Listing 2.5 shows shortened output of dumped data.

[Collection .20 d29966]

dbquery = None

name = New Books & Reports

[[sons]]

[[[CollectionCollection .20 ce285e]]]

score = 0

type = r

[[[[Collection .20 ce23e0]]]]

dbquery = collection:THESIS

5http://www.sqlalchemy.org/trac/wiki/UsageRecipes/SchemaDisplay

10

http://www.sqlalchemy.org/trac/wiki/UsageRecipes/SchemaDisplay

CHAPTER 2. DESIGN AND IMPLEMENTATION

name = New Theses

[[[[[examples]]]]]

[[[[[[CollectionExample .20 cdf8de]]]]]]

score = 0

[[[[[[[Example .20 cdf5dc]]]]]]]

body = quark -sigma +dense

type = boolean search

...

[[[CollectionCollection .20 c740a2]]]

score = 0

type = r

[[[[Collection .20 c7248c]]]]

dbquery = collection:BOOK

name = New Books

[[[[[examples]]]]]

[[[[[[CollectionExample .20 c1fc6e]]]]]]

score = 0

[[[[[[[Example .20 c17c94]]]]]]]

body = "author:ellis␣-muon*␣+abstract

:’dense␣quark␣matter ’"

type = complex boolean search

...

[[examples]]

[[[CollectionExample .20 d24bc8 -cf2e -11e0 -bae8 -0800274

e827d]]]

score = 0

[[[[Example .20 d24970 -cf2e -11e0 -bae8 -0800274 e827d

]]]]

body = quantum

type = word search

...

Listing 2.5: Example of Exported Data

11

CHAPTER 2. DESIGN AND IMPLEMENTATION

2.5.1 Column Data Transformation

In some situations, it is quite problematic to map stored column data onto the same
format in intermediate text file. The typical example is a column with binary data where
it is necessary to encode the data before saving them in the intermediate text file.
SQLAlchemy allows to define TypeDecorator class that associates callback functions
process_bind_param() and process_result_value().

class _PrintBinary(types.TypeDecorator):

def process_bind_param(self , value , dialect):

return (value != None) and base64.decodestring(

value) or None

def process_result_value(self , value , dialect):

return (value != None) and base64.encodestring(

value) or None

Listing 2.6: Example of Binary Data Manipulation

2.6 Data Import - import

The ability to import data is very important because it means that the administrator
does not have to manually insert data that already exists and were tested in another
Invenio instance. The other useful scenario comprises easier adding or editing of existing
object relations in schematic way using favourite text editor.

The import process is inverse to the export phase, hence the same query configuration
should be used. Possibly some additional blacklisted columns (i.e. they will be com-
puted by the business login after import) can be added to the query definition, but if
the recursive field is newly defined and there are no related models in intermediate file
the associations will be lost.

Note: it is full responsibility of editor to keep the syntax of the intermediate file
compatible with ConfigObj parser.

12

Chapter 3

Conclusion

The goal of this project was to develop and implement tool that provides necessary
support for the manipulation of tables stored Invenio database. The major interest
concerns the universal models that is the first step to database independence.

To summarize, the main contribution of the present work consists in analysis of vari-
ous possibilities of the SQLAlchemy ORM model to represent current Invenio database
model, and implementation of the basic tool supporting database schema and data ma-
nipulation. The substantial part of the work was dedicated to examine the database
model, improving table structures and defining simple query definitions. We have cre-
ated 442 models covering the whole current version of Invenio database. During the
process we have also suggested several improvements of missing primary keys and in-
dexes on foreign key columns.

The key issue tackled in the design of the intermediate file is to preserve correspondence
between object structure, and reasonable simplicity for human beings readability and
ease of editing. There are two possible suggestions to improve readability even more:
(1) association proxies1 seem to be good start to reduce nesting of intermediate con-
figuration files in case where many-to-many relationships contain additional attributes,
and (2) ordered lists2 could be an option to request ordered relationships.

1http://www.sqlalchemy.org/docs/orm/extensions/associationproxy.html
2http://www.sqlalchemy.org/docs/orm/extensions/orderinglist.html

13

http://www.sqlalchemy.org/docs/orm/extensions/associationproxy.html
http://www.sqlalchemy.org/docs/orm/extensions/orderinglist.html

Acknowledgement

I would like to thank Tibor Simko for his advices and invaluable input to my work
during my stay at CERN. I also very appreciate the support from Jean-Yves le Meur
and the whole IT/UDS/CDS group.

I would also like to thank Melissa Gaillard, Amalia Boari and Morag Hickman for
devoted help with the administrative matters.

At last but not less important, I would like to leave my gratitude to all the other
Openlab Summer Students 2011. They are Ioan Bucur, Ruggero Caravita, Goran
Cetusic, Daniela Dorneanu, Joao Faria, Urs Fassler, Georgi Hah, Martin Hellmich,
Hallgeir Lien, Jurand Nogiec, Wojciech Ozga, Arsalaan Shaikh, Sonia Stan and Grace
Young.

See you friends!

14

Bibliography

[1] Invenio web site
http://invenio-software.org/

[2] SQLAlchemy web site
http://www.sqlalchemy.org/

15

Appendix A

Modules

In this section we provide full list of modules with all 442 model classes.

• BibAuthorID

– AidAUTHORNAMES

– AidAUTHORNAMESBIBREFS

– AidCACHE

– AidDOCLIST

– AidPERSONID

– AidREALAUTHORDATA

– AidUSERINPUTLOG

– AidVIRTUALAUTHORS

– AidVIRTUALAUTHORSCLUSTERS

– AidVIRTUALAUTHORSDATA

– AidREALAUTHORS

• BibCirculation

– CrcBORROWER

– CrcLIBRARY

– CrcITEM

– CrcILLREQUEST

16

APPENDIX A. MODULES

– CrcLOAN

– CrcLOANREQUEST

– CrcVENDOR

– CrcPURCHASE

• BibClassify

– ClsMETHOD

• BibExport

– ExpJOB

– UserExpJOB

– ExpJOBRESULT

– ExpJOBExpQUERY

– ExpQUERY

– ExpQUERYRESULT

– ExpJOBRESULTExpQUERYRESULT

• BibHarvest

– OaiHARVEST

– OaiREPOSITORY

– OaiHARVESTLOG

• BibIndex

– IdxINDEX

– IdxINDEXNAME

– Field

– IdxINDEXField

– Fieldname

– Tag

– FieldTag

– IdxPAIR{01..17}F

– IdxPAIR{01..17}R

– IdxPHRASE{01..17}F

17

APPENDIX A. MODULES

– IdxPHRASE{01..17}R

– IdxWORD{01..17}F

– IdxWORD{01..17}R

• BibKnowledge

– KnwKB

– KnwKBDDEF

– KnwKBRVAL

• BibRank

– RnkMETHOD

– RnkMETHODDATA

– RnkMETHODNAME

– RnkCITATIONDATA

– RnkCITATIONDATAEXT

– RnkAUTHORDATA

– RnkDOWNLOADS

– RnkPAGEVIEWS

– RnkWORD01F

– RnkWORD01R

• Bibrec

– Bibrec

– Bibfmt

– BibHOLDINGPEN

– Bibdoc

– BibdocBibdoc

– BibrecBibdoc

– HstDOCUMENT

– HstRECORD

– Bib[0-9]{2}x

– BibrecBib[0-9]{2}x

18

APPENDIX A. MODULES

• BibSched

– HstTASK

– SchTASK

• BibSword

– SwrREMOTESERVER

– SwrCLIENTDATA

• BibUpload

– HstBATCHUPLOAD

• ErrorLib

– HstEXCEPTION

• misc

– Publreq

• User

– User

– Usergroup

– UserUsergroup

• WebAccess

– AccACTION

– AccARGUMENT

– AccMAILCOOKIE

– AccROLE

– AccAssociation

– UserAccROLE

• WebAlert

– UserQueryBasket

19

APPENDIX A. MODULES

• WebBasket

– BskBASKET

– BskEXTREC

– BskEXTFMT

– BskREC

– BskRECORDCOMMENT

– UserBskBASKET

– UsergroupBskBASKET

• WebComment

– CmtRECORDCOMMENT

– CmtACTIONHISTORY

– CmtSUBSCRIPTION

• WebJournal

– JrnJOURNAL

– JrnISSUE

• WebMessage

– MsgMESSAGE

– UserMsgMESSAGE

• WebSearch

– Collection

– Collectionname

– Collectiondetailedrecordpagetabs

– CollectionCollection

– Example

– CollectionExample

– Portalbox

– CollectionPortalbox

– Externalcollection

20

APPENDIX A. MODULES

– CollectionExternalcollection

– Format

– CollectionFormat

– Formatname

– Field

– Fieldvalue

– Fieldname

– Tag

– FieldTag

– WebQuery

– UserQuery

– CollectionFieldFieldvalue

– CollectionClsMETHOD

– CollectionRnkMETHOD

• WebSession

– Session

• WebStat

– StaEVENT

• WebSubmit

– SbmACTION

– SbmALLFUNCDESCR

– SbmAPPROVAL

– SbmCATEGORIES

– SbmCHECKS

– SbmCOLLECTION

– SbmCOLLECTIONSbmCOLLECTION

– SbmDOCTYPE

– SbmCOLLECTIONSbmDOCTYPE

– SbmCOOKIES

21

APPENDIX A. MODULES

– SbmCPLXAPPROVAL

– SbmFIELD

– SbmFIELDDESC

– SbmFORMATEXTENSION

– SbmFUNCTIONS

– SbmFUNDESC

– SbmGFILERESULT

– SbmIMPLEMENT

– SbmPARAMETERS

– SbmPUBLICATION

– SbmPUBLICATIONCOMM

– SbmPUBLICATIONDATA

– SbmREFEREES

– SbmSUBMISSIONS

22

Appendix B

Schemas

The list of figures with module schemas follows.

Figure B.1: User

23

APPENDIX B. SCHEMAS

Figure B.2: BibAuthorID

24

APPENDIX B. SCHEMAS

Figure B.3: BibRank

Figure B.4: WebAccess

25

APPENDIX B. SCHEMAS

Figure B.5: WebBasket

Figure B.6: WebMessage

26

APPENDIX B. SCHEMAS

Figure B.7: WebSearch

27

	Introduction
	Problem definition
	Outline

	Design and Implementation
	SQLAlchemy Models
	Queries Definition
	Schema Manipulation - create, drop, truncate
	MySQL Specific Problem (error #1170)

	Schema Visualization - schema
	Data Export - dump
	Column Data Transformation

	Data Import - import

	Conclusion
	Modules
	Schemas

